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Abstract-A thermomechanical buckling analysis ofmultilayered laminates with (across-the-width)
strip delaminations is conducted on the basis of anisotropic thermoelasticity of the constituent
layers and the Kirchhoff-Love hypothesis of the classical laminate theory. With the assumption
of generalized plane deformation, the present analysis yields exact, closed-form solutions of the
delamination model under in-plane compression and shear loads and a temperature load that may
vary arbitrarily in the thickness direction. A characteristic equation is obtained for the thermal and
mechanical load parameters associated with the states of bifurcation. This equation reveals explicitly
the effects of various geometrical, material and load parameters on the buckling of the delaminated
plate. The solutions of the characteristic equation indicate that a moderate temperature gradient in
the thickness direction may drastically reduce the axial bifurcation load. iJ.) 1998 Elsevier Science
Ltd. All rights reserved.

NOMENCLATURE

x,y, Z

"c

z' == z-zc
(J~y({J,y=I,2)

G~: ({J,y = 1,2)
T(z)
TUl T1

Cartesian coordinates referred to the center of the laminate
position of the middle surface of a sublaminate
thickness coordinate referred to the middle plane of a sublaminate
in-plc.ne components of the stress
in-plc,ne components of the strain
temperature load
temperature on the top and bottom surfaces of the laminate

Notatiollsfor kth layer of the laminate
h, == Zk-Z'_I = z~~z~_, thickness
g~ ==(z''i-z'L,)/2 .r. ==(d-z'L,)/3
a!1J (i,J = 1,2,6) in-plane anisotropic elastic compliance
Q'k' == [aiJJl-' in-plane stiffness matrix
!Y.W (P, y = 1,2) in-plane thermal expansion coefficients

Notations for the sublaminates
t,H,h == t-H
A == r,hkQ,kJ = [Ai!l
B == -r,g~Q(') = [BIf]
D == r,jkQ,kl = [D,tl
Lii!], L§'i/], [Qij]
[Ai,], [Bij]' [15i;1
~,~,3.

D,D,15
e~,.~~~ 1 EP}'
K/t,.,15.P,., ii:~,.

N fi:·, !itJ)" IVr,:!
M~", M fii , M~.,

Nt" I!J" IV7b
Mt,., Mt:, Mt
H/, W, ..,t.'

G, y-:-~, I), K

!:,:t,~, fl.,;.
e, y, ~, ii, /l
A
2L,2a
b==L-a, p==G,.,S==Nyp

P"
,oj' == P,,(L/t)'/(rr2D)
e == (t/a)AK sin Kb
V, (I.

thickness of the intact and disbonded sublaminates
extensional stiffness matrix
bendmg--extension coupling matrix
bendi.ng and twisting stiffness matrix
stiffness matrices of the lower disbonded sublaminate
stiffness matrices of the upper disbonded sublaminate
sublaminate properties defined by eqns (20) (25), etc.
sublaminate properties defined by eqns (19), (24), etc.
middle plane strains
middle plane curvatures
in-plane normal and shearing forces
bending and twisting moments
thermal forces
thermal moments
deflections
defOlmation parameters of the intact sublaminate [eqn (13a)]
deformation parameters of the lower laminate [eqn (13b)]
defOlmation parameters of the upper sublaminate [eqn (l3c)]
amplitude of deflection [eqn (9)]
length of the laminate and of the delamination

P == --N, = D(Kt)', P == -N, = D().t)2, P == -iV, = 15(/lt)'
critical value of P -- - -
nomlalized axial buckling load
nonclimensionalized amplitude of deflection
Poisson ratio and thermal expansion coefficient of an isotropic layer.
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1. INTRODUCTION

In the past decade, considerable research efforts have been expended on the buckling and
postbuckling behavior ofcomposite beams and plates with internal delaminations (Simitses
et al., 1985; Wang et aI., 1985; Yin et al., 1986; Garg, 1988; Kardomateas and Schmueser,
1988; Yin and Fei, 1988; Storakers, 1989; Whitcomb, 1989; Yin, 1989; Yin and Jane,
1992; Chai, 1990; Chen, 1991; Larsson, 1991; Cochelin and Potier-Ferry, 1991; Peck and
Springer, 1991 ; Hutchinson and Suo, 1992; Lee et al., 1993). Although hygrothermalloads,
in addition to mechanical loads, may aggravate the instability of delaminated composite
structures, such effects have not been systematically studied. Skin panels in high-speed
flight structures may be subjected to a significant temperature gradient. A thin delaminated
layer on the hot surface of the panel is particularly liable to the initiation of local buckling.
Generally speaking, the effect of temperature load on the stability of delaminated structures
depends on many factors, including the anisotropic elastic and thermal properties of the
successive layers of the laminate, the size and location of the delamination, and combined
mechanical and thermal loads. An understanding of such complex dependence of the
stability characteristic of the delaminated structure upon multifarious factors cannot be
gained from a small number of elaborate numerical solutions. It requires efficient, versatile
analysis methods applicable to various delamination models covering a wide range of
geometrical, material and loading parameters.

A postbuckling analysis of one-dimensional delamination models with general multi
layered configuration was given previously without considering the thermal loads (Yin,
1986). Closed-form analytical solutions of the anisotropic delamination model were
obtained based on von Karman's nonlinear strain--<iisplacement relation. It was found that
initial buckling and postbuckling deformation of the model may be considerably influenced
by certain effects peculiar to anisotropic laminates, including bending-stretching coupling
and shear-extension coupling. An outstanding feature of these generalized plane defor
mation solutions is that, due to bending-stretching coupling, the axial and shearing com
ponents of the membrane strain depend sinusoidally on the axial coordinate, even though
the axial force and the in-plane shearing force are constant in each (intact or disbonded)
sublaminate.

In the present work, we study thermomechanical buckling of delaminated composite
laminates subjected to a temperature field that may vary arbitrarily in the thickness direc
tion, T = T(z). It is shown that the effects of the temperature load are completely char
acterized by three effective thermal forces: I'!} and R: in the lower and upper disbonded
sublaminates and N~l' in the intact sublaminate. When these constant effective forces are
combined with the corresponding mechanical forces, the thermal buckling problem of the
strip delamination model assumes a mathematical form identical to the stability problem
under purely mechanical loads. The thermal and mechanical load parameters associated
with the bifurcation states are determined by a sytsem of three algebraic equations, eqns
(34)-(36), which may be reduced to a single characteristic equation after eliminating the
parameters Aand /1. The characteristic equation reveals explicitly how the various geometri
cal, material and loading parameters affect the buckling behavior of the delamination
model. Such relations are not easily discerned from numerical solutions using three-dimen
sional finite element analysis. In this work, the characteristic equation is solved for homo
geneous isotropic models and laminated anisotropic models with various delamination
lengths. The results indicate that a temperature gradient in the thickness direction may
drastically change the axial buckling load.

The analysis of the present paper is exact within the context of the classical laminated
plate theory. General anisotropic thermoelastic constitutive equations are used to model
the intact and disbonded sublaminates, so that the resulting buckling solutions show the
coupling of in-plane axial, transverse and shearing deformations (in contrast to previous
works on isotropic and specially orthotropic delamination models which do not manifest
such coupling effects). Furthermore, since a moisture gradient causes nonuniform swelling
in the same way that a temperature gradient causes differential thermal expansion, the
effect of moisture on the buckling of delaminated plates may be determined by the present
analysis when its concentration and expansion coefficients are substituted for the tem
perature and thermal expansion coefficients.
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2. THERMOELASTIC CONSTITUTIVE EQUATIONS OF AN ANISOTROPIC LAMINATE

The analysis of thermal buckling of a delaminated composite laminate requires a
concise formulation of the thermoelastic constitutive equations of intact and disbonded
sublaminates. In each sublaminate, the membrane strains and the moment resultants are
usually referred to the middle surface ofthe sublaminate. On the other hand, the temperature
field is described as a function of global coordinates (x,y,z), where z = 0 is the middle
surface of the intact sublaminate in the delamination model. Hence, in considering the
disbonded sublaminates, it is convenient to use, in addition to (x, y, z), another system of
coordinates (x, y, z') such that z = z' +zc, where Zc is the position of the middle surface of
the (upper or lower) disbonded sublaminate relative to that of the intact sublaminate.

Each sublaminate may consist of a number of homogeneous, orthotropic elastic layers
with different orientation angles and possibly made of different materials. The layers are
separated by parallel interfaces at z = Zk (or, equivalently, z' = z~ == Zk - zc)' The layers and
their interfaces are numbered successively from the bottom of the sublaminate to the top,
so that the kth layer is bounded below by the (k-l)th interface and bounded above by the
kth interface. In the kth layer, the in-plane strain components 8" 8y and ")'xy are related to
the in-plahe stresses and the temperature field T in the following manner:

(1)

where the matrix [aij)] characterizes the elastic compliance of the anisotropic layer and
i1~k), i1~k) and i1~~) denote the in-plane thermal expansion coefficients.

According to the Kirchhoff-Love assumption for classical laminates, the values of Bx '

8, and Yx .. at a distance z' from the midplane are determined by the mid-plane strains and
curvatures 8?, 8~, Y?y, K" Ky and K xy of the sublaminate:

(2)

We assume that the temperature field varies only in the thickness direction, T = T(z).
Substituting eqn (2) into eqn (1), we obtain

(3)

where Q(k) stands for the inverse matrix of the 3 x 3 symmetric matrix in eqn (I). Integrating
the in-plane stress componems and their first moments across the thickness of the successive
layers and summing the results over all layers of the sublaminate, one obtains the stress
and moment resultants

N, = IO"x dz, N .. = IO"y dz, N xy = ITxy dz,

M x = - IZ'l1 x dz, My = - Iz'a.. dz, M.\y = - JZ'Tn · dz

(4a)

(4b)

If (J" 0" .. and Tn' on the right-hand side of the preceding expressions are replaced, respectively,
by the first, second and third elements of the right-hand side ofeqn (3), one obtains, instead,
the thermal forces N~, N~, N~.. and the thermal moments M~, M"; and M~y" They stand for
the force and moment resultants that would result from the temperature load T(z) in the
hypothetical state when the sublaminate is constrained to have vanishing total strain. Notice
that when the temperature load depends only on the thickness coordinate, the thermal
forces and thermal moments are constant in the sublaminate.

In the kth layer, we define hk = Zk-Zk-l and
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gk = (Z;-ZLi)/2, fk =(Zl-Z2-1)/3

g~ = (z';-z'l-i)/2, f~ =(z'l-zLd/3 (5)

(6)

The three symmetric matrices A, Band D characterize, respectively, the stiffness properties
of the sublaminate associated with extension, extension-bending coupling and bending.
Consistent with the notation of eqn (1), the elements of these matrices have the indices
ranging over 1, 2 and 6.

Equations (2)-(6), along with the definitions of the thermal forces and thermal
moments, yield the thermoelastic constitutive equation of the sublaminate :

N,-N: eO
x

Nv-N; e?
•

N,y-N:y

[: :] Y~y (7)=
M,-M: K x

My-M; Ky

M.<v-M~y K xy

3. GENERALIZED PLANE DEFORMATION OF THE STRIP DELAMINATION MODEL

Consider a laminated beam-plate of thickness t and axial length 2L containing an
across-the-width delamination oflength 2a at a depth h beneath the upper surface (Fig. 1).
The delamination is assumed to be located symmetrically with respect to the two clamped
ends of the laminate. Let [AiJ, [Bu] and [Du] denote the stiffness matrices of the intact
segment. Furthermore, let [4il], ~ul and [Qu] stand for the corresponding matrices of the
lower delaminated sublaminate, and [Au], [Bu] and [Dul those of the upper delaminated
sublaminate. With H = t-h, the following equalities are easily established:

Au = ~JI+Aij , Bu = ~ij +Bu+~ijh/2 - AuH/2,

(8)

In generalized plane-strain buckling, the three sublaminates in the right half of the
delaminated plate undergo transverse deflections of the following forms.

z
+

a...

h_ -----i-'- _t L _

L
Fig. I. One-dimensional delamination model.

x
-..
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W(X)=A{COSK(L-x)-l}, (a:::;x:::;L)

2643

(9a)

~(x) = A {(K sin Kbj,t sin Aa)(coda -codx) +cos Kb - I}, (0:::; x :::; a) (9b)

w(x) = A{(KsinKb!J-lsin,ua)(cos,ua-cos,ux)+cosKb-1}, (0:::; x:::; a) (9c)

where A, K, Aand ,u are constants yet to be determined, b == L - a, and x denotes the axial
coordinate measured from the midpoint of the beam-plate. These expressions satisfy the
continuity of deflection and slope at the crack tip, w(a) = !!:,(a) = w(a) and
w'(a) = !!:,'(a) = w'(a), the symmetry conditions at the midpoint, !!:,'(O) = }V'(O) = 0, as well
as the clamped end condition, w(L) = 0 and w'(L) = O. The curvatures of the sublaminates
are obtained by differentiating eqn (9) twice:

Kx = -(8/t)(KajsinKb)cosK(L-x), Ky = K xy = 0

'ix = (8jt)(Aajsin Aa) cos AX, !£F = 'ixy = 0

Kx = {8jt)(,uajsin,ua)cos,ux, Ky = Kxy = 0

where

8 == (tja)AK sin Kb.

Furthermore, the middle plane strains that satisfy the compatibility conditions

(with similar conditions for the disbonded sublaminates) are given by

B~ = ~~ = t; = /3,

(lOa)

(lOb)

(JOc)

(11 )

(12)

e.~ = e+¢cosK(L-x), Y~y = Y+1]cosK(L-x), (a:::; x:::; L) (l3a)

<;~ = <;+{COSAx, r~}' = r+!1COSAx, (0:::; x:::; a)

t; = g+~cos,ux, Y~y = "l+r/cos,ux, (0:::; x:::; a)

(l3b)

(l3c)

where /3, e, ~, S, y, J:, Y, ¢, {, ~, 11, t'l and r; are additional constant which, together with K, A, ,u
and 8 (or A), completely characterize the generalized plane deformation of the delamination
model.

The strain field given by eqns (12) and [l3(a-c)] generalizes that given in Yin et al.
(1986) for a homogeneous beam plate by adding terms that vary sinusoidally with the axial
coordinate. Such terms arise in cases of laminated beam because the curvature K x varies
sinusoidally and because there is coupling between bending and in-plane deformation for
general unsymmetric laminates.

The thermoelastic constitutive equation of the two disbonded sublaminates are similar
in form to eqn (7). The thermal forces of the disbonded sublaminates may be obtained by
integrating the right-hand side of eqn (3) and summing the results over the group of layers
in each sublaminate. It is easily verified that, when the temperature field depends only on
Z, the thermal forces of the disbonded sublaminates are related to those of the intact
sublaminate by the additivity relation

(14)

Furthermore, the thermal moments are related by
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(15)

Notice that the preceding relations among the thermal forces and thermal moments of the
sublaminates are formally identical to those among the stiffness matrices in the first two
equations of eqn (8).

Substituting eqns (9)-(13) and the thermoelastic constitutive relation, eqn (7), into the
equilibrium equations

Nx,x +Nxy,y = 0, Nxy,x+Ny,y = 0,

1v.rx,xx + 2Mxy,x)" + My,yy - NxW,xx - 2Nxy W,xy - Ny W,yy = °
(where the commas indicate partial differentiation), one obtains

All~+A16f/-BI]AK2= 0, AI6~+A66f/-BI6AK2 = 0,

B]I~+B]6f/-DIIAK2_N,A = 0,

N,-N~ = AI18+AJ2!3+A16Y, N,y-N~y = A168+A26!3+A66Y,

M,-- M~ = B 11 8+ B I2 !3+ B I6 y-D8t(Ka/sin Kb) cos K(L-x)

(l6a, b)

(l6c)

(l7a,b)

(l7c)

(l7d, e)

(l7f)

Furthermore, by substituting eqns (9a), (17f) and (II) into eqn (l6c), one finds that the
compressive axial force in the laminate is directly proportional to K

2
:

where

P == -N, = D(Kt)2

D == (I/Ll) A 16

(18)

(19)

(20)

Equations [16(a, b)] also imply that the two deformation parameters ~ and f/ in eqn (13a)
may be expressed in terms of K and 8:

~ = (1/Ll)(A 66 B 1 ] / t - A 16B16/t)8Ka/(sin Kb)

f/ = (1/Ll)(A I] B L6/t - A] 6B ]I /t)8Ka/(sin Kb)

(2Ia)

(21 b)

Similar results may be obtained for the disbonded sublaminates from the corresponding
equilibrium and constitutive equations, Thus, for the lower sublaminate we have

(22a, b)

(22c)

where

(23)

(24)
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Furthermore, eqns (21a, b) have their counterparts

The corresponding results for the upper sublaminate are obvious. In particular,

where 15 and ~ are defined by expressions analogous to eqns (24) and (25).

2645

(25)

(26)

(27)

(28)

4. BIFURCATION STATES AND THE CHARACTERISTIC EQUATION

As mentioned previous, eqns [9(a--e)] ensure continuity of the deflection and the slope
at the crack tip. The continuity condition of the transverse in-plane displacement v may be
obtained by integrating the shearing strains LXY and }ixy of eqns (l3b, c). This yields

J::' + '1(sin it,a)/(Aa) = y+ fi(sin Ila)/(j.w)

or,

Continuity of the axial displacement u at the crack tip requires that - u(a)
= g(a) + (t/2)w'(a), where

-il(a) = - Le~ dx+L{w'(x)r dx

-!~(a) = - L~edx+L{~'(x)}2dx

In considering bifurcation of the delamination model from membrane states to buckled
states, one may restrict attention to infinitesimally small deflections so that the second
integrals in the expressions of u(a) and g(a) may be neglected. Hence the continuity
condition yields

In view of eqn (8), the balance conditions of the in-plane forces

and similar relations for the thermal forces [eqn (14)] yield

-AI18--A16}'+ill~+i16J::'+Alle+AI6'Y = 0

-AI68-A66}'+iI6~+i661.+AI6e+A66Y = 0

These results follow from eqns [17(d), (e)] for the intact sublaminate, eqns [22(a, b)] for
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the lower disbonded sublaminate, and similar equations for the upper sublaminate. Using
eqn (8) again, we obtain from the above

(31)

(32)

Furthermore, by evaluating eqns (17£), (22c) and a similar equation for the upper sub
laminate at x = a, and by using the moment balance condition at the crack tip,

along with a similar equation for the thermal forces and moments [eqn (15)), we obtain

(!ill +:illh/2)(~-c)+@16+:'!16h/2)(l'-Y)

+ (Ell -All H(2)(e-c) + (E 16 - A I6 H/2)(y -y)

+ (DKactn Kb +QJea ctn Jea+Dj.Lactn j.La)8t = 0 (33)

Equations (29)--(33) constitute a system of five linear homogeneous equations for the
five unknowns ~-c, l' -/" '8-c, Y-/' and e. The system has a nontrivial solution if and only
if the determinant of the coefficient matrix vanishes. This condition yields the following
equation:

- A(DKa ctn Kb + QAa ctn I.a + Da ctn a)

+r I{(:'!Il !!.16/ t - :'!16!i1 dt)~ - (A II E 16 /t - A l6 EIl /t)/X}

+rd --(:'!16!i16/t-:,!66!!.II/t)/~)+(:i16!i16/t-A66EI1/t)/X}= 0 (34)

where

All A I6 BII/t All A I6 B1l/t

r l == A l6 A 66 B 16 /t r 2 == A I6 A66 B 16 /t

A l6 A 66 (E 16 - A16 H/2)/t All A66 (ElL -AI1 H/2)/t

It is remarkable that eqn (34), the result of the preceding lengthy analysis, is utterly
independent of the thermal load and involves only the parameters K, Aand j.L (corresponding
to the axial compression forces in the sublaminates). Another relation among the same set
of parameters may be obtained by substituting eqns (18), (23) and (28) into the balance
condition of axial forces, N x = fIx + Nx . This yields

(35)

The bifurcation states are characterized by eqns (34), (35) and an additional equation
which, unlike the preceding equations, does depend on the thermal load. To obtain this
equation, we notice that, in the states associated with and prior to bifurcation, the entire
delamination model is subjected to a uniform strain with Cx = c, cy = f3 and Yxy = y. The
moment balance condition

in conjunction with eqns (8) and (15) and the sublaminate constitutive equations yields
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where, for any parameter <I> defined in both disbonded sublaminates, the symbol <) denotes

<<I» == (iDH -Ph)/(2t)

By eliminating G and y from the last equation and the constitutive equations of the laminate

we obtain

A <All)

Alll(S-N~v)+<A I2 )

16 <A
I6

)

(36)

The three eqns (34)-(36) involve five mechanical load parameters K, A, J1, S, f3 and the
thermal forces N~, N~ and N~',,, The parameters A and J1 may be easily solved from the last
two of the three equations since these equations depend linearly on ().t)2 and (J1t)2. Sub
stituting the solution for ), and J1 into eqn (34), we obtain a single characteristic equation
for the three in-plane load parameters S, f3 and P = DK2t2 and the thermal forces N:, N~
and N~v' Any combination of these mechanical and thermal load parameters that satisfies
the cha"racteristic equation and that yields positive values of (At)2 and (J1t)2 from eqns (35)
and (36) corresponds to a bifurcation state of the delamination model.

It is noteworthy that the temperature load T(z) affects the buckling of the delamination
model through the three thermal forces Ii}, N~ and N:y only and that N~v and S affect the
bifurcation states through the combinations S - N~v only.

5. RESULTS FOR DELAMINATED HOMOGENEOUS PLATES

It is easily seen that <Aij) = 0 for homogeneous plates and, more generally, for
delamination models with recurrent structure, where each sublaminate is configured by
repeating the same generic ply group a number of times (Yin, 1986). Then eqn (36) reduces
to

(37)

so that the characteristic equation becomes independent of the parameters N~y, Sand f3
and yields a simple relation between the axial buckling load and the right-hand side of eqn
(37).

In a homogeneous isotropic or anisotropic delaminated plate there is no bending
extension coupling and eqn (34) reduces to

(38)

Solutions of the system of eqns (35), (37) and (38) are computed for delamination
models with the thickness ratios hit = 0.25 and 0.1. For simplicity, we assume that the
temperature varies linearly across the thickness of the model. Then eqn (37) reduces to
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(39)

where v is the Poisson's ratio, (l is the isotropic thermal expansion coefficient and Tu and Tj

denote, respectively, the temperature on the upper and lower surfaces of the plate. Since
the temperature field enters the system of eqns (35), (38) and (39) only through Tu - Tb a
uniform temperatun: load has no effect on the buckling solution of a delaminated
homogeneous (anisotropic) plate, although it generally affects buckling of a delaminated
laminate.

For several length ratios a/L, the combinations of the temperature gradient and the
axial load associated with the states of bifurcation are shown in Figs 2 and 3. The horizontal
coordinate ;Jj> of the ligures is the axial compression load P normalized with respect to the
Euler buckling load of a perfect beam-plate without a delamination.

It is clear from these figures that the temperature gradient has a very significant effect upon
the critical axial load. A relatively large thermal strain caused by a high temperature in the
upper region of the laminate (which contains the delamination) may cause a significant
reduction in the axial buckling load. Consider a laminate with v = 0.3, (l = 10 x 1O-6j"K
and L/t = 30. A temperature difference Tu - Tj = 1000K between the upper and lower
surfaces of the laminate yields

This may cause a drastic reduction in the critical axial load, as shown by the results of the
figures (the amount of reduction in [JJ is more than 0.5).

In previous works on buckling of delamination models under purely mechanical loads
(Yin and Fei, 1984; Yin, 1989), it was shown that, depending on the relative slenderness

1

~~

r-.
[of

0.5r-:
'-"
~

0

-0.5 .

-1 0 0.2

p(Ut)2/(;r2 D)

Fig. 2. Bifurcation loads of homogeneous isotropic delamination models with hit = 0.25.
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1. 5 rr-----.........----....--.----r----~--_.__,_,

a/L=O.l
...........

1

"g 0.5
'-'
...-;,.
fo;<

C
Ij

O~~~"O<----"......---------------+_j

-0.5

p(Ut)2f(1/ D)

Fig. 3. Bifurcation loads of homogeneous isotropic delamination models with hit = 0.10.
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ratio of the upper disbonded sublaminate vs the entire laminate, the buckling behavior may
be asymptotic to either a local buckling mode for the upper sublaminate or a global buckling
mode for the entire model. In the local buckling mode, which is asymptotically valid in the
case of a relatively thin and long upper disbonded sublaminate, the bending deformation
and nonuniformity of in-plane deformation are insignificant in the base plate, so that the
two ends of the upper sublaminate have negligible deflection and slope in the buckled state.
Hence the bifurcation load for the local buckling mode may be closely estimated by
considering buckling of the upper disbonded sublaminate (with the two ends x = ±: a
assumed to have negligibly small rotations) under axial shortening as induced by uniform
axial compression of the base laminate, i.e.

In the present case, which includes a nonuniform temperature load, the approximation
of eqn (40a) remains valid for relatively thin and long delaminations, but eqn (40b) must
be modified because the right-hand side of eqn (39) does not vanish. Solution of eqns (35),
(39) and (40a) yields

(41)

Hence the curves in Figs 2 and 3 are asymptotic to straight lines with the slope
- (tlH)n21{6(1 + v)}. This slope is independent of the length ratio aiL, and its inverse is a
measure of the sensitivity of the dependence of the normalized axial buckling load to the
differential thermal expansion of the top and bottom surfaces of the laminate. The curves
in the figures terminate at the left-end points which correspond to Eer = Per - Per = O.

In the case of a relatively short and thick delamination, the approximate relation of
eqn (41) is not valid and the buckling behavior approximates the Euler buckling of a perfect
laminate without delamination. For such delamination models all curves in Figs 2 and 3
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approach the vertica"l asymptote ;JjJ = 1 as the temperature gradient assumes large negative
values. In Fig. 3, the curve corresponding to h/ t = 0.1 and a/L = 0.1 shows rapid transition
from the asymptotic local buckling behavior of eqn (41) to the asymptotic global buckling
behavior. The transition is more gradual for the curve corresponding to a/L = 0.2 in Fig.
2 (where hit = 0.25).

6. RESULTS FOR MULTILAYERED ANISOTROPIC DELAMINATION MODELS

For laminated delamination models <Au) == (A;JH - duh)/2t generally does not vanish
so that the in-plane shearing force S and the transverse in-plane strain {J affect buckling
according to eqn (36). However, since the present study is concerned mainly with the
thermal effects on buckling, the following solutions are presented for the case S = {J = O.

We consider eight-layer symmetric angle-ply laminates with the stacking sequence
[(45/ -45)2]s and with a strip delamination in the second interface from the top surface. If
the layers are made of unidirectional AS/350l graphite/epoxy composite with orthotropic
elastic and thermal coefficients £1 = 138 GPa, £2 = 8.96 GPa, G12 = 7.1 GPa,
V12 = V23 = 0.3, Ci l = -0.3 x 1O~6rK and Ci2 = 28.1 x 1O-6rK (see Table 1.7 and 8.3 in Tsai
and Hahn, 1980), the buckling loads for various delamination lengths are shown in Fig. 4.
The results are qualitatively similar to those of Fig. 2 for the isotropic delaminated plate
with the same thickness ratio, hit = 0.25. However, the coupling stiffnesses ~ij] and [B;J
associated with the anisotropic disbonded sublaminates affect the characteristic equation
[eqn (34)] so that, when the thermal load is absent, the bifurcation loads of Fig. 4 are
significantly smaller than those shown in Fig. 2. Furthermore, because of the small value
of Ci l , the asymptotic slope of the curves in Fig. 4 are several times greater than that of Fig.
2. Hence the buckling loads are less sensitively affected by the imposed temperature gradient.
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Fig. 4. Results for delaminated [(45/ -45),], AS3501 graphite/epoxy laminates, hit = 0.25.
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Fig. 5. Results for delaminated [(451 -45hLB(4)/5505 boron/epoxy laminates, hit = 0.25.

The results of an identical delamination model made of B(4)/5505 boron/epoxy com
posite are shown in Fig. 5. The layers have the orthotropic properties E) = 204 GPa,
E2 = 18.5 GPa, G12 = 5.59 GPa, Vl2 = V23 = 0.23, !Xl = 6.1 x 1O-6;aK and
1Y.2 = 30.3 x 1O-6;aK. The curves in Fig. 5 have a much smaller asymptotic slope compared
to those of Fig. 4, implying significantly greater effects of temperature gradients upon the
buckling load.

7. SUMMARY AND CONCLUDING REMARKS

Under the assumption of generalized plane deformation (i.e. all strain components are
independent of y), an exact buckling analysis is presented for a multilayered strip delami
nation model subjected to a temperature load that may vary arbitrarily in the thickness
direction. The analysis is based on the thermoelastic constitutive equations of anisotropic
laminates, i.e. classical laminated plate theory is applied to the intact and disbonded
sublaminates, and the anisotropic elastic constants and thermal expansion coefficients of
the constituent plies are assumed to be absolute constants unaffected by temperature
increase. Under these assumptions, the temperature load affects the buckling behavior of a
strip delamination model through the axial thermal forces N: and N~ of the disbonded
sublaminates and the shearing thermal force N:y of the intact laminate. The bifurcation
states are characterized by those combinations of the thermal and mechanical load par
ameters N:, N:, S - N:Y' P (== DK2t2

) and f3 (== By) which satisfy a characteristic equation.
The characteristic equation, obtained by eliminating the parameters A. and J1 from the three
algebraic eqns (34)-(36), reveals explicitly how the various geometrical, material and
load parameters affect the buckling behavior of the delaminated plate. If the laminate is
homogeneous and isotropic and if the temperature varies linearly in the thickness direction,
then the characteristic equation reduces to a relation between the axial buckling load and
the differential thermal strain of the upper and lower surfaces, and the only parameters
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involved in this relation are the ratios among h, t, a, L and the Poisson's ratio of the
material.

Bending-stretching coupling stiffness matrices UU and [Bd associated with unsym
metric disbonded sublaminates may significantly reduce the buckling load through their
contributions to eqn (34). The coupling effects also cause the axial and shearing components
of the membrane strains in the buckled sublaminates to vary sinusoidally with the axial
coordinate x, even though the axial force and the in-plane shearing force are constant in
each sublaminate. The transverse in-plane strain 8y (== fJ) and the in-plane shearing force S
generally affect buckling, as indicated by eqn (36).

A temperature gradient corresponding to a moderate differential thermal expansion
of the upper and lower surfaces of the laminate may drastically change the axial buckling
load of the delamination model. If (h/a)/(t/L) is smaller than unity by a certain margin (i.e.
if the upper disbonded sublaminate is more slender than the whole laminate) so that
bifurcation is initiated by local buckling of the upper sublaminate, then the dependence of
the buckling load upon the temperature gradient is asymptotic to a linear relation. For
homogeneous delamination models the slope of this linear relation is independent of the
normalized delamination length, a/L. This slope, whose inverse is a measure of the sensitivity
of the axial buckling load to the imposed temperature gradient, may be calculated from
eqn (36) by using the asymptotic relation of eqn (40a).

Moisture concentration produces additional strain in a manner analogous to the
generation of thermal strain by the temperature field. Hence the preceding formulation and
analysis of the thermal effects on buckling may also be used to evaluate the similar effects
of a moisture gradient when appropriate substitutions are made for the variables and the
expansion coefficients.

While the present analysis was based on the classical laminate theory for the sake of
simplicity, it may be modified to account for the thickness shear effect by including
additional kinematical variables and out-of-plane shearing forces [see Kardomateas and
Schmueser (1988) and Chen (1991) for the results under purely mechanical loading].
Finally, fiber composites at increased temperature may show loss of stiffness in the direction
transverse to the fibers, so that the elastic moduli are temperature dependent rather than
absolute constants. Such softening effect may cause further reduction in the buckling load
under temperature influence. The effect may be assessed in the present scheme of analysis
by using elastic moduli appropriate to the temperature load.
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